Philadelphia University Faculty of Science Department of biotechnology and Genetic Engineering Academic year (2022/2023)

Approval date: Issue:

Credit hours (3)

Course Syllabus

Bachelor

Course information

Course#	Course title				P	rerequisite
0240487	Molecular Diagnostics					0240386
Course type			Class ti	me	Room #	
□ University Requirement □ Faculty Requirement			M&V	V	2-1001	
🖾 Major Requ	irement	\boxtimes Elective	□ Compulsory	9:45-11	:00	

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Dr. Sameer Masoud	2-1013	2214	S & Tu (12:30-1:30) M & W (11:00-12:00)	smasoud@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method				
⊠ Physical □ Online □ Blended				
	Learning Model			
Precentage Synchrono		Asynchronous	Physical	
			100%	

Course Description

This course will cover the principles of Molecular Diagnosis which is the process of identifying a condition by studying molecules, such as proteins, DNA, and RNA, in a sample. Molecular diagnostics is a new discipline that captures genomic and proteomic expression patterns and uses the information to distinguish between two or more conditions at the molecular level. The conditions under investigation can be human genetic disease or infectious diseases. Emphasis in this is on molecular of human diseases but few examples will be given for diagnosis in animals or plants.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes		
	Knowledge			
К1	Understand principle of the molecular techniques used in diagnosis.	Кр3		
K2	Know the alternative methods of diagnosis	Kp3		
	Skills			
S1	Investigate diagnosis of abnormal inherited or acquired genetic diseases	Sp2		
	Competencies			
C1	Recognize the use of molecular diagnosis to study and monitor diseases	Cp1		

Learning Resources

	Molecular Diagnostics; Fundamentals, Methods, and Clinical Applications (THIRD EDITION, 2019) Lela Buckingham, F. A. Davis Company	
Supporting References		
Supporting websites		
Teaching Environment	□ Classroom □ laboratory □ Learning platform □ Other	

Meetings and subjects' timetables

Week	Торіс	Learning Methods	Tasks	Learning Material
1	Introduction to Molecular Diagnostics	Lectures & collaborative learning		РРТ
	Common Techniques in Molecular Biol	ogy (Starting	page 77)	
2	Ch 3: Nucleic Acid Extraction Methods ISOLATION OF DNA ISOLATION OF RNA MEASUREMENT OF NUCLEIC ACID QUALITY AND QUANTITY 	Lectures & collaborative learning		Pages 78-96
3	Ch. 4 Resolution and Detection of NucleicAcids> ELECTROPHORESIS OF NUCLEIC ACIDS> CAPILLARY ELECTROPHORESIS> BUFFER SYSTEMS> ELECTROPHORESIS EQUIPMENT> DETECTION SYSTEMS	Lectures & collaborative learning		Pages 97-111
4 & 5	 Ch. 5 Analysis and Characterization of Nucleic Acids and Proteins RESTRICTION ENZYME MAPPING OF DNA CRISPR ENZYME SYSTEMS HYBRIDIZATION TECHNOLOGIES PROBE HYBRIDIZATION PROBES HYBRIDIZATION CONDITIONS, STRINGENCY 	Lectures & collaborative learning		Pages 112-141

	 DETECTION SYSTEMS INTERPRETATION OF RESULTS ARRAY-BASED HYBRIDIZATION SOLUTION HYBRIDIZATION 		
6&7	Ch. 6 Nucleic Acid Amplification > TARGET AMPLIFICATION > PROBE AMPLIFICATION > SIGNAL AMPLIFICATION	Lectures & collaborative learning	Pages 142-178
8	Ch 7 Chromosomal Structure and Chromosomal Mutations ➤ CHROMOSOMAL STRUCTURE AND ANALYSIS ➤ DETECTION OF GENOME AND CHROMOSOMAL MUTATIONS ➤ COMPARATIVE GENOME HYBRIDIZATION (CGH)	Lectures & collaborative learning	Pages 179-198
9	Ch 8 Gene Mutations > TYPES OF GENE MUTATIONS > DETECTION OF GENE MUTATIONS > GENE VARIANT NOMENCLATURE > GENE NAMES	Lectures & collaborative learning	Pages 199-222
10	Ch 9 DNA Sequencing DIRECT SEQUENCING PYROSEQUENCING BISULFITE DNA SEQUENCING RNA SEQUENCING NEXT-GENERATION SEQUENCING BIOINFORMATICS THE HUMAN GENOME PROJECT Techniques in the Clinical Laboratory	Lectures & collaborative learning	Pages 223-258
11	 Ch 10 DNA Polymorphisms and Human Identification TYPES OF POLYMORPHISMS RFLP TYPING STR TYPING BY PCR LINKAGE ANALYSIS BONE MARROW ENGRAFTMENT TESTING USING DNA POLYMORPHISMS QUALITY ASSURANCE FOR SURGICAL SECTIONS USING STR SINGLE-NUCLEOTIDE POLYMORPHISMS MITOCHONDRIAL DNA POLYMORPHISMS OTHER IDENTIFICATION METHODS 	Lectures & collaborative learning	Pages 260-300
12	 Ch 11 Detection and Identification of Microorganisms SPECIMEN COLLECTION SAMPLE PREPARATION QUALITY ASSURANCE MOLECULAR DETECTION OF MICROORGANISMS ANTIMICROBIAL AGENTS MOLECULAR EPIDEMIOLOGY 	Lectures & collaborative learning	Pages 301-343
13	 Ch 12 Molecular Detection of Inherited Diseases THE MOLECULAR BASIS OF INHERITED DISEASES CHROMOSOMAL ABNORMALITIES PATTERNS OF INHERITANCE IN SINGLE-GENE DISORDERS MOLECULAR BASIS OF SINGLE-GENE DISORDERS SINGLE-GENE DISORDERS WITH NONCLASSICAL PATTERNS OF INHERITANCE LIMITATIONS OF MOLECULAR TESTING 	Lectures & collaborative learning	Pages 344-368
14	 Ch 13 Molecular Oncology CLASSIFICATION OF NEOPLASMS MOLECULAR BASIS OF CANCER ANALYTICAL TARGETS OF MOLECULAR TESTING GENE AND CHROMOSOMAL MUTATIONS IN SOLID TUMOR 	Lectures & collaborative learning	Pages 369-416

	MOLECULAR ANALYSIS OF LEUKEMIA AND LYMPHOMA		
15	Ch 14 DNA-Based Tissue Typing THE MHC LOCUS HLA POLYMORPHISMS 420 MOLECULAR ANALYSIS OF THE MHC ADDITIONAL RECOGNITION FACTORS MHC DISEASE ASSOCIATION SUMMARY OF LABORATORY TESTING AND Ch 15 Quality Assurance and Quality Control in the Molecular Laboratory SPECIMEN HANDLING TEST PERFORMANCE QUALITY CONTROL QUALITY ASSURANCE INSTRUMENT MAINTENANCE PROFICIENCY TESTING DOCUMENTATION OF TEST RESULTS REPORTING RESULTS 	Lectures & collaborative learning	Pages 417-445 Pages 446-470
16	Final Exam		

* includes: Lecture, flipped Class, project- based learning, problem solving based learning,

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	% 30	Week 7	
Various Assessments *	%1.	Term Paper	
various Assessments *	% 20	Four Quizzes	
Final Exam	% 40	Week 16	
Total	%100		

* includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**	
	Knowledge			
K1	Understand principle of the molecular techniques			
	used in diagnosis.			
K2	Know the alternative methods of diagnosis			
	Skills			
S1	Investigate diagnosis of abnormal inherited or			
	acquired genetic diseases			
Competencies				
C1	Recognize the use of molecular diagnosis to study			
	and monitor diseases			

* includes: Lecture, flipped Class, project- based learning , problem solving based learning, collaborative learning

** includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Course Polices

Policy	Policy Requirements				
Passing Grade	The minimum passing grade for the course is (50%) and the minimum final				
	mark recorded on transcript is (35%).				
	• Missing an exam without a valid excuse will result in a zero grade to be assigned to the exam or assessment.				
Missing	• A Student who misses an exam or scheduled assessment, for a				
Exams	legitimate reason, must submit an official written excuse within a				
	week from the an exam or assessment due date.				
	• A student who has an excuse for missing a final exam should submit				
	the excuse to the dean within three days of the missed exam date.				
Attendance	The student is not allowed to be absent more than (15%) of the total hours				
	prescribed for the course, which equates to six lectures days (M, W) and				
	seven lectures (S,T,R). If the student misses more than (15%) of the total				
	hours prescribed for the course without a satisfactory excuse accepted by the				
	dean of the faculty, s/he will be prohibited from taking the final exam and				
	the grade in that course is considered (zero), but if the absence is due to				
	illness or a compulsive excuse accepted by the dean of the college, then				
Academic	withdrawal grade will be recorded.				
Honesty	Philadelphia University pays special attention to the issue of academic				
Honesty	integrity, and the penalties stipulated in the university's instructions are applied to those who are proven to have committed an act that violates				
	academic integrity, such as: cheating, plagiarism (academic theft), collusion,				
	and violating intellectual property rights.				
	and violating interestant property rights.				